

Fully Electronic Generation and Detection of Broadband THz pulses and Their Applications

Aydin Babakhani Integrated Sensors Laboratory ECE Department, UCLA

Email: aydinbabakhani@ucla.edu Website: www.seas.ucla.edu/~aydin/

Terahertz Radiation: The Last Frontier

Spectroscopy Applications of Terahertz

- Video-rate vibrational spectroscopy
- Detection and identification of:
 - Narcotics and pharmaceuticals
 - Explosives
 - Biological materials

600 RDX (111) 500 PETN (101) 296K 500 M 296K 260K (cm⁻¹) $\overline{\mathbf{M}}$ 260K 230K 230K Absorption (300 500 200K 200K 170K 170K 140K 140K 200 110K 110K PETN RDX 80K 80K 8 100 100 50K C₃H₆N₆O₆ C₅H₈N₄O₁₂ 50K 20K 0 L 20 6K 30 40 50 60 70 20 40 50 70 10 30 60 80 Wavenumber (cm⁻¹) Wavenumber (cm⁻¹)

- Other Applications:
 - High-speed wireless communication
 - Security imaging
 - Skin cancer imaging

"white powder" in an envelope

Conventional Laser-Based Methods

- Mechanical scanning in two dimensions, slow process
- Time consuming alignment
- Expensive >\$100K

Direct Digital-to-Impulse Radiation (D2I)

Impulse radiation mechanism in Direct Digital-to-Impulse (D2I)

- An oscillator-less design
- Storing current in an antenna
- Disconnecting the current by a fast switch

Circuit Architecture

- Impulse shaping network
 - Distributed array of high SRF capacitors to deliver large current in short time (behaves like an ideal supply voltage)

Circuit Schematic

- Current is stored in a slot bow-tie antenna
- A fast switch turns off the current. The on-chip antenna releases the stored energy and radiates a short impulse
- An impulse shaping network is used to minimize the ringing

Single-Chip 4x2 D2I Array in SiGe BiCMOS

- H-tree distribution of input trigger to 8 elements
- Programmable delay generator per element

Prototype Assembly

- A chip-on-board assembly with bond wires is used
- A trigger signal fed to the chip triggers radiation of a THz pulse
- Radiation is coupled to a 25mm diameter lens with 400µm extension

Time-Domain Characterization Setup

- A fsec-laser-based THz-TDS system is used to characterize the array chip
- A fully electronic chip is used as the emitter in a THz-TDS system

Measured Time-Domain Waveforms

- 300fs delay resolution
- Amplitude modulation capability

Frequency-Domain Characterization Setup

Frequency-Domain Characterization Results

2-Hz spectral line-width at 0.75THz

Radiation Pattern Measurements

 Directivities of 22dB, 24dB and 28dB at 0.33THz, 0.57THz and 0.75THz, respectively

Array Chip Micrograph

- Process technology: 90nm SiGe BiCMOS
- A single element only occupies 300µm x 650µm
- Second Best Paper Award in IEEE APS 2016

Single-Chip Direct Digital-to-Impulse Radiation

- Best Paper Award in IEEE IMS 2014
- Process technology: 130nm SiGe BiCMOS
- A single element occupies 550µm x 850µm
- Time-domain characterization is used with Advantest fsec detector setup

Raw Received Signal on the Spectrum Analyzer

A Single-Chip THz Source

- Expensive ~\$100K
- Bulky ~ 1m
- Slow ~ 100MHz rep. rate
- Not scalable to array
- Requires a fsec laser

- Low-cost ~ few \$
- Small ~ 1mm
- Fast ~ 10GHz rep. rate
- Scalable
- No need for laser. Operates with a digital trigger.

THz Rotational Spectroscopy

- Polar molecules such as H2S, CO2, H2O, NH3, …
- Explosives (e.g. RDX and HMX)
- Narcotics
- Large molecules

Gas Cell

- Aluminum tube with 50mm diameter and 150mm length with Teflon lens windows on both sides
- Controlled pressure
- Received power is measured in two cases:
 - Gas cell is filled with the target gas
 - Gas cell is filled with pure nitrogen

Gas Spectroscopy Measurement Results

- NH₃ at 572GHz
 - 1% concentration
 - Pressure varied to demonstrate broadening effect

50% humidity (0.75% concentration)

THz Hyper-Spectral Imaging Setup

- Setup:
 - Four off-axis parabolic mirrors focus the beam on the sample
 - A 2D translation stage
- Spectral information: 0.03-1.03THz

Image at 330GHz

Materials: metal and plastic

Image at 609GHz

Materials: metal, empty and filled cellulose capsules

Hyper-Spectral Imaging (100GHz-1.2THz)

- Sample size: 25mm x 25mm, thickness: 5mm
- Transmission imaging, resolution~500µm

THz Micro-Doppler Radar with A Comb Source

THz Micro-Doppler Measurements

Vibration Sensing and Micro-Doppler

Key Enabler: Ultra-stable THz Tone Generation and Detection 2Hz line-width at 1.1THz, 2ppt!

Long Distance Propagation of THz Pulses

We have measured up to a distance of 112m at 1.1THz

Broadband Dual-Comb Spectroscopy

- Slight difference between RF and LO repetition rates
- Compressing the signal down to low frequencies

Broadband Comb Detector

- Fabricated in TSMC 65nm CMOS process
- Die area = 0.56mm², P_{dc} = 34mW

Dual Comb Experimental Setup

- Broadband 50-280GHz detection with 2Hz line-width is done with a low-power receiver chip (34mW)
- Combination of the TX and RX chips can be used as a broadband scalar network analyzer (imagine a sub-\$1k network analyzer that covers 50-280GHz)

Future Directions

Medical Imaging and Spectroscopy

THz image

Visible Image

Gesture Recognition and Micro-Doppler

1Tbits/sec Wireless Communication over 100m

Broadband Remote Sensing of Materials, Objects, and Vibrations

Thank You