

National Institute of Information and Communications Technology

テラヘルツシステム応用推進協議会 平成31年3月25日

日本におけるテラヘルツ波通信の研究開発動向 Survey of Japanese R&D on Terahertz Wireless Communications

笠松 章史 (かさまつ あきふみ)

国立研究開発法人情報通信研究機構 未来ICT研究所 兼 テラヘルツ研究センター

謝辞

本発表には以下の皆様による成果が含まれております。ご協力に感謝いたします。(敬称略)

<u>情報通信研究機構</u>	<u>広島大学</u>	NECネットワーク・センサ株式会社
稲垣 惠三	藤島 実	日本電信電話株式会社
小川 博世	天川 修平	パナソニック株式会社
菅野 敦史	吉田 毅	富士通株式会社
沢田 浩和	李 尚嘩	
関根 徳彦	片山光亮(当時)	
原 紳介	高野 恭弥(当時)	本研究の一部は総務省・電波資源拡
藤井 勝巳	董 鋭冰	大のための研究開発「テラヘルツ波
寶迫 巌		デバイス基盤技術の研究開発」の一
諸橋 功		垠として天心されました。
_		

李可人

Outline

Introduction

- Japanese MIC 300-GHz projects and related projects
- Challenge of THz CMOS transceiver
 - 300-GHz CMOS transmitter
 - 300-GHz CMOS receiver
 - 300-GHz CMOS transceiver module
 - Advanced 300-GHz transceiver
- Conclusion

Outline

Introduction

- Japanese MIC 300-GHz projects and related projects
- Challenge of THz CMOS transceiver
 - 300-GHz CMOS transmitter
 - 300-GHz CMOS receiver
 - 300-GHz CMOS transceiver module
 - Advanced 300-GHz transceiver
- Conclusion

Terahertz (THz) waves

 THz waves (100 GHz to 3 THz) sit between radio waves and visible light

- Wide atmospheric window opens at 300-GHz band
- Vast unallocated frequency band lies above 275 GHz
 Atmospheric window

300-GHz band in IEEE Std 802.15.3d

 802.15.3d defined wireless physical layer using 252 – 322 GHz for THz ultrahigh-speed wireless communications

[1] IEEE Std. 802.15.3d-2017 (Amendment to IEEE Std 802.15.3-2016 as amended by IEEE Std 802.15.3e-2017), pp. 1–55, Oct. 2017.
 [2] T. Kürner, IEEE 802.15-10-0320-02-0000-Tutorial_Igthz.

6

Outline

Introduction

 Japanese MIC 300-GHz projects and related projects

- Challenge of THz CMOS transceiver
 - 300-GHz CMOS transmitter
 - 300-GHz CMOS receiver
 - 300-GHz CMOS transceiver module
 - Advanced 300-GHz transceiver
- Conclusion

国プロ(総務省)

総務省 電波資源拡大のための研究開発	受託者	期間(年度)
超高周波搬送波による数十ギガビット無線伝送技術の研究開発 (化合物半導体デバイスとKIOSKダウンロード実証)	NTT 富士通 NICT	H23~H27 (5ヵ年)
テラヘルツ波デバイス基盤技術の研究開発 ~300GHz帯シリコンCMOSトランシーバ技術~	パナソニック 広島大学 NICT	H26~H30 (5ヵ年)
テラヘルツ波デバイス基盤技術の研究開発 ~300GHz帯増幅器技術~	NECネットワーク・センサ NICT	H26~H29 (4ヵ年)

IMS2016 Best Industry Paper Award

"Demonstration of 20-Gbps Wireless Data Transmission at 300 GHz for KIOSK Instant Data Downloading Applications with InP MMICs"

20Gbps、1m伝送ならびに、40Gbps伝送結果

FEC on RS(255,223)	実データ転送平均速度[Gbps]	
2.9GB	10.3~12.6	
3.8GB	12.1~13.3	
17.9GB	12.1~13.8	

キオスクダウンロード実験と結果

Advanced Result (NTT, IMS2018, 16QAM, 100Gbit/s)

Fig. 1. Conceptual schematic of the proposed 300-GHz TRx.

Fig. 9. Measured constellations and spectrums of 300-GHz TRx.

Fig. 10. Measurement setup for wireless transmission demonstration.

Fig. 11. Results of wireless transmission using 300-GHz TRx.

H. Hamada, et al., IMS2018, pp. 1480-1483, June 2018.

■シリコンCMOSによる300GHz帯無線送信機 K. Takano, et al., ISSCC2017, pp.308-309 (2017).

■シリコンCMOSによる300GHz帯無線受信機 S. Hara, et al., IMS2017, pp.1-4 (2017).

シリコン集積回路トランシーバ(300GHz帯)

NICT

■Si CMOSプロセス(40nm)の動作限界を超える300GHzで、 1ch 105Gb/sの伝送速度を実現

Output power of 300GHz Si CMOS transmitter

QAM T. Takano, et al., ISSCC2017, pp.308-309 (2017).

■300GHz帯 近距離無線通信用の小型・広帯域アンテナ技術の確立

Development of small wideband antenna technology for terahertz wireless communication

インピーダンス帯域20GHz以上(実測) アンテナ利得7dBi以上、利得帯域30GHz以上(シミュレーション)

Microstrip patch antenna with stacked patches

Reflection and gain characteristics of microstrip patch antenna with stacked patches Current distribution and radiation pattern of

microstrip patch antenna with stacked patches

真空管技術によるテラヘルツ帯増幅技術

最先端光技術を活用したテラヘルツ帯信号発生・伝送技術

■ 光技術によるテラヘルツ帯IQミキサによるテラヘルツ帯多値信号発生

Multi-level signal generation in terahertz bands by photonics-based IQ mixer and optical frequency comb source

超広帯域光周波数コム発生技術、光変調技術を援用した1THz帯多値信号伝送の原理検証実験に成功

Combination of ultra-broadband optical frequency comb generator and optical modulation technique realizes multi-level signal transmission at 1 THz.

1THz幅光周波数コム信号の光スペクトルと1.4MHz 幅QPSK、16QAM信号の復調コンスタレーション

Optical spectrum of 1-THz-bandwidth optical frequency comb and demodulated constellation maps for QPSK and 16QAM with a signal

4mm空間伝送実験の様子

A. Kanno et al., IEEE MWP2016. WM2.3, Nov. 2016.

電波暗室内での300GHz QPSK伝送実験の様子

Photo of 300-GHz QPSK transmission in NICT's large-scale anechoic chamber

300GHz QPSK伝送時のビット誤り率計測例

■300 GHzでの屋内伝搬測定の結果から、パスロスモデルを検討

A Consideration of Indoor Path Loss Model in 300 GHz Band

廊下環境 屋内伝搬実験とパスロスモデル

300GHz実験局免許

License of a 300-GHz experimental transmitter

Measurement of indoor propagation characteristics and pass loss models

■データセンタ環境のパスロスモデル、建物侵入損失を検討

Consideration of Path Loss Model at Data Center and Building Entry Loss in 300 GHz Band

正規反射点にサーバがある場合とない場合で比較 0

直接波とサーバ筐体からの反射波で2波干渉することが明確化 \bigcirc

様々な実環境での測定(左)と 各種建材の透過特性測定(右)

建物侵入損失の検討

18

Consideration of building entry loss

Beyond 5Gモバイルシステムに向けての研究開発

■大容量アプリケーション向けテラヘルツエンドトゥーエンド無線システムの開発 NICTからの日欧連携委託研究(平成30~32年)

早稲田大学/千葉工業大学/岐阜大学 日本電気株式会社/高速近接無線技術研究組合

ブラウンシュヴァイク工科大学(ドイツ) /ドイツテレコム(ドイツ) フラウンホーファー応用固体物理研究所(ドイツ) Siklu Communications(イスラエル) リール第一大学/マイクロエレクトロニクス・ナノテクノロジ電子研究所(フランス) シュツットガルト大学(ドイツ)/VIVID Components(イギリス) Beyond5Gでの利用イメージ

Outline

Introduction

- Japanese MIC 300-GHz projects and related projects
- Challenge of THz CMOS transceiver
 - 300-GHz CMOS transmitter
 - 300-GHz CMOS receiver
 - 300-GHz CMOS transceiver module
 - Advanced 300-GHz transceiver

Conclusion

Challenge of 300-GHz CMOS transceiver

Si CMOS THz front-end will allow seamless integration with base-band CMOS circuitry

- PA- and LNA-less architecture because of $f_{max} < 300 \text{ GHz}$
- Capable of supporting QAM

Developed 300-GHz transceivers in 40-nm Si CMOS process with $f_{max} \simeq 280$ GHz with Hiroshima Univ., Panasonic, NICT.

[1] K. Katayama, et al., ISSCC2016, pp. 342–343, Feb. 2016.
 [2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.
 [3] S. Hara, et al., IMS2017, pp. 1-4, June 2017.

THz transmitter architectures

[1] K. Katayama, et al., ISSCC2016, pp. 342–343, Feb. 2016. [2] K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

National Institute of Information and Communications Technology

Key technology for CMOS transmitter

- Square mixer—Doubler-based mixer
 - IF₂ and LO are applied to the gate of an FET doubler
 - IF₂ is linearly upconverted by the cross term, IF₂·LO
 - Relatively high output power and good linearity
- Image suppression and LO leak cancellation performed

K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

300-GHz CMOS transmitter

Pout: -5.5 dBm RF Freq.: 302 GHz 3dB BW: 16 GHz

K. Takano, et al., ISSCC2017, pp. 308-309, Feb. 2017.

Measured constellation, spectra, and wireless demonstration

Modulation	32QAM
Constellation (Equalized)	
EVM	8.9%
Data rate	105Gb/s

K. Takano, et al., ISSCC2017, pp. 308–309, Feb. 2017.

THz receiver architectures

S. Hara, et al., IMS2017, pp. 1-4, June 2017.

300-GHz CMOS receiver

Wireless link between 300-GHz CMOS TX and RX chips

Achieved a wireless data rate of 32 Gbit/s with 16QAM

[1] K. Takano, et al., ISSCC2017, pp.308-309, Feb. 2017. [2] S. Hara, et al., IMS2017, pp. 1-4, June 2017.

Schematic of the 300-GHz transceiver

Chip micrograph

S. Lee, et al., ISSCC2019, 9.5, Feb. 2019.

Wireless measurement setup

S. Lee, et al., ISSCC2019, 9.5, Feb. 2019.

Measured wireless performance

TX alone

Center freq.	265.68GHz	
Modulation	16QAM	32QAM
Constellation (Equalized)	*** *** ***	· · · · · · · · · · · · · · · · · · ·
EVM (%rms)	9.1%rms	7.4%rms
Symbol rate	28Gbaud	28Gbaud
Data rate	112Gb/s	140Gb/s

TX wireless performance using VDI down converter

$\underline{TX} \rightarrow RX$				
Ch.49	Ch.50	Ch.66		
257.04GHz	265.68GHz	265.68GHz		
16QAM	16QAM	16QAM		
· · · · · · · · · · · · · · · · · · ·	资源。 资源。 资源、资源 资源、资源	*** *** *** ***		
10.9%rms	11.3%rms	12%rms		
7.04Gbaud	7.04Gbaud	20Gbaud		
28.16Gb/s	28.16Gb/s	80Gb/s		

BW→ Ch.49, 50 : 8.64GHz, Ch.66 : 25.92GHz

S. Lee, et al., ISSCC2019, 9.5, Feb. 2019.

Conclusion

InP-HEMT

- KIOSK download demonstration, 20 Gbps
- Over 2m, 100 Gbps

300-GHz Traveling Wave Tube Amplifire

Under development

300-GHz CMOS

- TRX in 40nm CMOS (f_{max} < 300GHz)</p>
- TX/RX modules using CMOS-chip-to-WG transition in a multilayer glass epoxy PCB

The other R&Ds for terahertz wireless on going in Japan